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Stabilization in the presence of uncertainties is a fundamental requirement in the design of feedback compen-
sators for flexible structures. The search for the largest neighborhood around a given design plant for which a
single feedback controller produces closed-loop stability can be formulated as an H, control problem. It has been
shown that the use of normalized coprime factor plant descriptions, where the plant perturbations are defined
as additive modifications to the coprime factors, leads to a closed-form expression for the maximal-neighborhood
boundary allowing optimal and suboptimal H,, compensators to be computed directly without the usual ~-
iteration. This paper describes an application of normalized coprime factor stabilization theory to the computa-
tion of robustly stable compensators for the NASA Coatrol Structures Interaction Evolutionary Model. Results
indicate that the suboptimal version of the theory has the potential of providing low authority compensators
that are robustly stable for significant regions of variations in design model parameters and additive unmodeled

dynamics,

Nomenclature
= minimal state-variable realization for G(s)
= state-variable realization of 25-mode model
in phase 0 simulation

(A, B,C, D)
(As, By, Cy, Dy)

(A, B..C,, D) = state-variable realization for truncated
system AG(s) in phase O simulation

A; = systermn matrix for perturbed phase 0
simulation

C; = output matrix in state-variable realization of
perturbed phase 0 system

Fu(P, AP) = upper linear-fractional transform

F.(P.K) = lower linear-fractional transform

G(s) = p x m transfer function matrix with
real-rational function elements

Ga(s) = G(s) after augmentation by loop-shaping
functions

Gs(s) = 50th-order design model transfer-function
matrix

Ga(s) = perturbed plant

G;(s) = transfer function for perturbed G(s)

Gs, (5) = G;(s) after augmentation by loop-shaping
functions

H, = Hardy® space of complex-valued functions
F(s) of a complex variable s that are analytic
and bounded in the open right-half plane in
the sense that sup{| F(s)] : Res > 0} < 00

inf = greatest lower bound

I = identity matrix of appropriate order

K(s) = feedback compensator for G(s)

K,(s) = feedback compensator for G 4(s)

k.i,a) = positive real parameters employed in Eq. (26)

M, N = factors in a left-coprime factorization of G(s)

M, N4 = left-coprime factors for G ,(s)

My, Ny, = left-coprime factors for G, (s)

P = generalized plant transfer-function matrix

RH,,, = all asymptotically stable, proper, rational
transfer-function matrices

s = Laplace transform variable
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sup = least upper bound

t = time variable, 1 € [0, c0)

u(s) = Laplace transform of system input u(t)

Wi(s), Wa(s) = transfer-function matrices used for loop
shaping

y(s) = Laplace transform of system output y(z)

v = positive real number, 1/¢

Yrmin = positive real number, 1/eq,,

(bw); = random numbers uniformly distributed
within [-0.01,0.01},i =1,...,9

6L = random numbers uniformly distributed
within {-0.1,0.1},i = 1,...,9

AP = generalization perturbation

AG(s) _ = perturbation to G(s)

AM,AN_ = perturbations to left-coprime factors of G(s)

AM,, AN, = perturbations to left-coprime factors of
G4(s)

€, €4 = positive real number used as a robustness
measure

Emax = largest value of ¢

& = damping ratio for the ith mode of the phase 0
model, i =1,...,25

&p)i = perturbed value of damping ratio ¢,
i=1,...,9

z = diagonal matrix of damping ratios of
25-mode phase 0 simulation model

G (A) = largest singular value of constant matrix A

o (A) = smallest singular value of constant matrix A

o[G(s)] = largest Hankel singular value of G € RH

¢ = mode-shape matrix

1) = frequency, rad/s

w; = frequency of ith mode in phase 0 model,
rad/s

(wp)i = perturbed values of w;, rad/s

Q = diagonal matrix of frequencies of 25-mode
phase 0 model, rad/s

Superscripts

T = matrix transpose

-1 = matrix inverse

* = matrix transpose with argument s replaced
by —s,e.g., N*(s) = NT(-s)

Norms

Il = Hy norm: || G (s}l = sup, (G (jw)]

- w = Hankel norm: [|G(s)ll¢ = 6[G(s)]
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Introduction

N the design of controllers for physical systems, there almost

always has to be some trade-off performed between design model
accuracy and mathematical complexity.! The more accurate anal-
ysis models often require computational time that is too excessive
to qualify them as design models for control purposes. In practice,
high-order nonlinear models are typically linearized about some
operating condition and have their model order reduced to produce
design models that conform to computational limitations or com-
pensator implementation constraints. These practicalities introduce
modeling errors in the form of unmodeled dynamics that must be
accounted for in the controller design process. Additionally, param-
eters in the design and analysis models are not always accurately
known and can cause destabilizing effects if parametric uncertainty
is ignored or improperly treated.

The foregoing considerations are especially critical in the de-
sign of controllers for flexible space structures.”* Space structure
controller design models are generally obtained through some order
reduction procedure applied to a high-order analysis model obtained
from finite element techniques. The order reduction process essen-
tially deletes a portion of the finite element model to produce a
lower order controller design model. Although no longer contained
in the design model, the unmodeled dynamics (represented by the
deleted portion) can still be influenced by control inputs. Care must
be taken in the design process so as to avoid control and observation
spillover effects® that destabilize the unmodeled dynamics. Also,
the high-order model contains parametric uncertainties in natural
frequencies, damping ratios, and mode shapes and slopes that get
passed through to the design model. A fundamental requirement of
control law design for flexible space structures is then the attain-
ment and preservation of closed-loop stability in the presence of
unmodeled dynamics and parameter uncertainties.

Uncertainties may be viewed as perturbations about a nominal
design model. If a single compensator stabilizes the nominal plant
and, in addition, all systems within some neighborhood of the plant
generated by the perturbations, then the compensator is said to ro-
bustly stabilize the overall family of systems.* The search for the
largest neighborhood around a given design plant for which a single
controller produces closed-loop stability can be formulated as an
H,, control problem. Glover and McFarlane®¢ show that the use
of normalized coprime factor plant descriptions, where the plant
perturbations are defined as additive modifications to the coprime
factors, leads to a closed-form expression for the maximal perturba-
tion radius. The maximal radius can be computed directly interms of
the design model, thus allowing optimal and suboptimal robust com-
pensators to be found without the usual y-iteration of H,, design.

This paper describes an application of the Glover-McFarlane the-
ory to the robust control of a simulated structure configured to have
many of the dynamical characteristics and controller design diffi-
culties associated with flexible space structures. We begin with an
overview of the robust stabilization problem specialized to normal-
ized coprime factor plant descriptions. These theoretical results are
then applied to the computation of robustly stable compensators for
a computer simulation of the phase 0 version of the NASA Control
Structures Interaction (CSI) Evolutionary Model.”

Robust Stabilization Problem for Normalized Coprime
Factor Plant Descriptions

Let G (s) represent a p x m transfer function matrix and AG(s)
denote some perturbation to G(s), both with real rational elements.
One method of modeling plant uncertainty involves the use of co-
prime factorizations wherein G is written in coprime factor form
and the system perturbations defined in terms of perturbations to
the respective coprime factors. For a left-coprime factorization

G=M'N 6))
the perturbed system G, is given by
Gy = (M + AM)Y(N + AN) )
with
AG =[AM,AN] € RHy, 3

la— Ga
AP -
P
u y
K <

Fig.1 Feedback control of generalized uncertainty model.

This uncertainty model can be represented as an upper linear-
fractional transformation

Gs =Fy(P,AP)= Pp+ PyAPUI - PyAP)'P, (4

where det(] — P;; AP) # 0 and

Py | P2
Py | Pn
with admissible perturbations defined as
AP =[AN,-AM) € RH,, ©6)

The foregoing (P, A P) uncertainty-model structure and the pro-
cess of using feedback to stabilize and control P in the presence of
A P can be represented by the block diagram shown in Fig. 1. Em-
ploying Fig. 1, a robust stabilization problem can be posed. Viewing
G, as a family of perturbed models for a given class of perturba-
tions A P, seek a single compensator K (s) that stabilizes not only
G (i.e., G4 with AP = 0) but all members of the G 5 family. For P
and A P given by Egs. (5) and (6), the following robust stabilization
theorem is available.®

Robust stabilization theorem. For any Py, of P given by Eq. (5)
with stabilizable and detectable state-variable realization, the com-
pensator K (s) of Fig. | stabilizes G4 = Fy(P, AP) for all ad-
missible A P such that JAP|le < ¢ if and only if (i) X stabilizes
Py, and (ii) | FL(P, K)lloe < &7}, where the lower lincar-fractional
transformation

F.(P,K) = Py + PuK(I — PpK) ' Py
= [‘f] (I —-GK)'M! 6

The parameter ¢ in the theorem can be viewed as a measure of the
level of robust stability for a given closed-loop system. The problem
of finding the largest level of robust stability is termed the optimal
robust stabilization problem and is formally stated as follows.

Optimal robust stabilization problem. Find the largest strictly
positive number & = &g, such that, for all admissible AP satis-
fying APl < &, there exists a single controller that stabilizes
Fu(P,AP).

From the robust stabilization theorem,

-1
fans = (iBfIFLP. O)lo) ®
where K is chosen from all controllers that stabilize P;;. Com-
putation of &max thus involves the solution of an H,, optimization

problem®®; that is, find
ir}ﬂlfﬂ(l’. Koo = Vi L))
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over all K that stabilize Py,. Finding yp, typically involves an
iterative procedure to determine the smallest y (= yy,) such that
the suboptimal robust stabilization problem

igfll?L(P, Kl =y (10)

is solved. The solution of the optimal robust stabilization problem for
the coprime factorization uncertainty class can also be approached
in a similar manner; however, if the coprime factors of G are nor-
malized in the sense that

NEN*(s) + MM (s) = ] an

then the y-iteration procedure can be compietely avoided and the
computational effort greatly reduced. It can be shown>® that, for
the problem of designing a controller X that robustly stabilizes a
plant G written in normalized left-coprime factor (NLCF) form, the
maximum robust stability margin is

Emax = (Ymn) ™' = {1 = I[N, M1I%}2 > 0 (12)

where the subscript H refers to the Hankel norm.'°

State-variable realizations for the suboptimal compensators with
Y > Ymin Can be found in Refs. 5 and 6. Theory and state-variable
algorithms to solve the optimal problem with y = y,, can be found
in Ref. 10.

Loop Shaping Within NLCF Robust
Stabilization Structure

Since G = M~!N is a NLCE,

I[7 Ja - e

- u[f](l ~GK) MM, N]ILO

oo

="[K(I—GK)‘l K(I—GK)"G]“OOSV a3)

(I-GKY?' (I-GK)'G
Only a certain class of weighting matrices is allowed if the exact-
solution advantage enjoyed by the NLCF robust stabilization prob-
lem is to be preserved.$

Let W\ (s) and W5 (s) be system precompensator and postcompen-
sator matrices, respectively, and define an augmented plant G 4 (s) by

Ga(s) = Wa()G(s)Wi(s) (14)

Performing a NLCF robust stabilization design with G replaced
by G, yields a dynamic compensator K (s) robustly stabilizing
G 4 . Figure 2a gives a block diagram illustrating this loop-shaping
procedure. Simple block manipulation yields Fig. 2b, which shows
that the corresponding compensator X to be applied to the unshaped
plant G is

K(s) = Wi(s)K(s)Wa(s) (15)
We then have
(Eane)™ = (1= NIVA, M%)

= inf
Ky

K
[ ,‘](I—GAKA)-‘U, Gal

o0

K

W 'K - GK)Y W' WK (I - GK)'GW,
W(I - GK)™'W;' W - GK)IGW,

(16)

which indicates a weighting configuration that can be applied to the
elements of Eq. (13) if the exact-solution structure is to be preserved.
In general, if other weighting configurations are desired, the normal
H y-iteration procedure is required.

/GA
W ™ ¢ ™ W
K, i
a)
™ ¢
/K
W,y g K, W, -t
b)

Fig. 2 Loop-shaping procedure: a) compensator for shaped plant,
G4 (s) and b) equivalent compensator for unshaped plant, G(s).

Robust Stabilization of Phase 0 Evolutionary Model

In this section, the robust stabilization theory for a plant modeled
in NLCF form is applied to produce compensators for the control
of a computer model of a laboratory structure having many of the
characteristics and design difficulties associated with flexible space
structures.

Description of Phase 0 Model

The CSI Evolutionary Model is a laboratory testbed concept in
which a sequence of testbeds is evolved with each new facility hav-
ing more challenging dynamics and control characteristics than the
previous. The testbeds are to be designed and constructed at the
NASA Langley Research Center for the experimental validation of
control techniques and integrated design methodology developed
under Langley’s CSI program.!! The phase 0 model was the first
testbed to be constructed under this program. Unfortunately, the
phase 0 model is no longer in existence at Langley. However, many
useful studies were performed using the phase 0 model, >~ and its
data base has been archived and is still available for this and future
studies. A schematic of the phase 0 structure is shown in Fig. 3 and
a detailed description may be found in Ref. 7.

The phase 0 structure consisted of two vertical towers and two
horizontal booms attached to a central 62-bay truss main section
with each bay a 10-in. cube. The structure was suspended from
the laboratory ceiling by springs and two long cables designed to
minimize the interaction between the suspension and the structural
modes. A laser source was mounted at the top of the taller vertical
tower and a 16-ft reflector with a mirrored surface mounted on the
other tower. The laser beam could be reflected by the mirrored sur-
face onto a detector surface above the reflector. The total structural
weight was 741 1b. Eight proportional bidirectional gas thrusters
(air jets) provided the input force actuation, whereas eight nearly
collocated servo accelerometers provided output measurements.

Global line-of-sight pointing studies have been performed using
the laser targeting system.!* This study will only be directly con-
cerned with vibration suppression about a given operating point and
will not treat laser targeting as such. However, vibration suppression
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Thrusters (actuators 1-8)
Accelerometers (sensors 1-8)

1

Fig.3 Schematic of phase 0 evolutionary model.

of the laser tower modes will be a critical part of our design require-
ments since damping of the laser tower structure was a troublesome
issue in previous laboratory tests.

The phase 0 model had six nonstructural modes (due to suspen-
sion) and many significant elastic modes. The NASTRAN finite
element model consisted of 3560 degrees of freedom.” A total of
86 modes with frequencies below 50 Hz were selected as a truth or
evaluation model. A reduced-order model consisting of 25 modes,
selected from the 86 modes through a controllability and observabil-
ity analysis, was used for the controller design model. Table 1 shows
the frequency range of these 25 modes in hertz. Frequencies of the
first six pendulum/suspension modes, brought about by the cable
suspension in a 1 g environment, range from 0.147 to 0.874 Hz. It
was observed in the laboratory that the true damping ratios probably
lie between 0.1 and 1.0%. For simulation and controller design pur-
poses, previous theoretical studies with experimential validation'?
have demonstrated that a 0.5% nominal value adequately describes
modes below 2 Hz to within an accuracy of 10%. Frequencies be-
low 2 Hz in the finite element model can be taken to be accurate to
within 1%.'

Using data from the finite element analysis, a dynamical mathe-
matical model in the modal coordinate system can be constructed.
A 50th-order state-variable realization of this model (with transfer
matrix denoted by G s ) will appear as (A, By, Cy, D), where

0 1 0
Af = _QZ -Z Bf= q)T

C, =0 ®lA; D; = 00T an

with -
Q = diag(w;, @y, . .., @2s) (18)
Z = diagQRon, 25w, . . ., 28250025) (19)

and @ is an 8 x 25 matrix of mode shapes. In Eqgs. (18) and (19), w;
denotes frequency and ¢; = 0.005 damping ratio fori = 1,..., 25.
Eigenvalues of A are given in Table 1. Since the damping ratios
are small, the frequencies in radians per second are closely approx-
imated by the imaginary parts of the eigenvalues.

In flexible structures, higher frequency modes are more difficult
to accurately measure and compute. For the phase 0 stucture, the fi-
nite element model provided reasonably accurate natural frequency
and damping values for modes below 2 Hz. However, higher fre-
quency modes, beginning with the 10th mode at 2.3 Hz, are not
accurately known.!* In this design, only modes with frequencies
up to 14 rad/s are used to form the compensator design model and

3
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Table 1 Phase 0 model open-loop system characteristics

Eigenvalue Frequency,
Mode no. (Re, £Im) Hz
1 (—4.622 x 1073,9.243 x 1071) 0.147
2 (—4.682 x 1073,9.365 x 107°1) 0.149
3 (—4.876 x 1073,9.752 x 1071) 0.155
4 (~2.294 x 1072, 4.587) 0.730
5 (—2.349 x 1072, 4.698) 0.748
6 (—2.746 x 1072, 5.491) 0.874
7 (—4.629 x 1072,9.258) 1474
8 (—5.460 x 102, 1.092 x 10) 1.738
9 (—5.916 x 1072, 1.183 x 10) .1.883
10 (~7.230 x 1072, 1.446 x 10) 2.301
11 (—-8.918 x 10~!, 1.783 x 10) 2.838
12 (—~1.261 x 10~1,2.522 x 10) 4015
13 (~1.267 x 10~, 2.534 x 10) 4.032
14 (—1.321 x 107}, 2.642 x 10) 4.206
15 (—1.380 x 107}, 2.760 x 10) 4392
16 (—1.728 x 10~1, 3.457 x 10) 5.501
17 (—1.941 x 107}, 3.883 x 10) 6.180
18 (—1.958 x 1071, 3.915 x 10) 6.231
19 (~2.033 x 10~1, 4.066 x 10) 6.471
20 (—2.095 x 107!, 4.191 x 10) 6.670
21 (—2.316 x 107!, 4.632 x 10) 7.372
22 (—2.605 x 10~1,5.211 x 10) 8.293
23 (—2.817 x 107}, 5.634 x 10) 8.966
24 (—3.922 x 107!, 7.845 x 10) 12.49
25 (—5.294 x 10~}, 1.059 x 10?) 16.85

@
B
=2
(-3
@
<
2
o~
>
k.
=2
B2t -
vy td
-
3 /’\/_ . 4
107 F - olGGw))
//
-4 -7
104} - <

100 10!
Frequency, rad/sec

102

Fig. 4 Unweighted open-loop nominal system G(s).

modes with higher frequencies are used to simulate unmodeled dy-
namics. Modes above mode 9 are truncated from the 25-mode model
and accounted for as an additive uncertainty in the design process.
The matrix Gy now appears as

Gy =G; =G+ AG (20)
G=C(slg—A'B+D @

and
AG =C, (sl — A)'B, + D, 22

Numerical data for (A, B, C, D) and (A,, B,, C,, D) are given in
Appendix C of Ref. 15. Figures 4 and 5 show individual frequency
response (sigma) plots for G and AG.

Design Approach

A controller achieving robust vibration suppression is the goal of
this study. The control design should increase the damping of all the
pseudo rigid-body (suspension) and structural modes of the design
model G. The closed-loop system must also possess stability ro-
bustness with respect to unmodeled structural modes, of which AG
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Fig. 5 Truncated system AG(s).

from Eq. (22) is taken as a representative sample, and to the para-
metric uncertainties generated by the expected errors in frequency
(1%) and damping ratios (10%) in the design model.

In the application of the NLCF robust stabilization theory to
follow, stability robustness to additive unmodeled dynamics is in-
corporated by use of the weighting matrices in Eq. (14) and ana-
lyzed through examination of closed-loop conditions for stability
robustness,?

IAGK(I — GK) e < 1 23)
or the more conservative sufficient condition for Eq. (23),
GAGBIKUI —GK) ()} <1 4

for s = jw, @ € [0, o). The design parameters in the weight-
ing matrices are adjusted so that condition (23) is satisfied with a
margin of at least 40% and no destabilization of the closed-loop sys-
tem is experienced from the expected parametric variations in the
open-loop design system. Thereafter, within the remaining freedom
allowed, the parameters are adjusted to achieve the largest increase
in damping in the suspension and structural modes of G(s).

Loop-Shaping Procedures

Optimal compensator and central suboptimal compensators were
computed. Both compensators, when applied to G in the feedback
fashion of Fig. 2, enhanced the stability of G but grossly violated
spillover condition (23) with A G given by Eq. (22). Failure to satisfy
condition (23) was primarily caused by the lack of free parameters
for adjustment in the algorithms and the fact that G(s) is not strictly
proper, in which case both optimal and suboptimal compensators
will not be strictly proper.

It was found that the spillover problem could be resolved through
incorporation of loop-shaping functions of the form (14). Weighting
functions employed were

Wi(s) =1 (25)
and
Wos) =k/(s+a)'ls (26)

The positive real parametersa, i, and k are adjusted from observation
of condition (24) with the compensator (15). The parameter a is
chosen such that a plot of the inverse of G[K (I — GK)™!(jw)] vs.
w € [0, co) breaks upward before w = 14 rad/s, the approximate
frequency at which the AG dynamics become predominant. The
parameter i roughly controls the slope of the upward break and was
taken as i = 1 ori = 2. The quantity k adjusts the magnitude of
W,(s) and, in the studies to follow, ranged between 0.08 and 4.0.
Increasing the parameter k moves the closed-loop eigenvalues of the
controllable modes of the design model further into the complex left-
hand plane but also increases the potential of destabilizing spillover
into the modes of A,.

Analysis of Robustness to Structured Perturbations

Values of natural frequency are assumed to be accurate to within
1% and values of damping ratio to within 10% for modes 1-9 below
2 Hz.'%'* In order to evaluate the compensators for perturbations in
frequencies and damping ratios within these ranges, the frequencies
w; and damping ratios £; in the A-matrix of the nine-mode design
mode] were replaced by perturbed values (w,); and (¢,); given by

(wp)i = wi + (bw);w; 27
and
)i =8+ (8L )il (28)

fori = 1,...,9. In Egs. (27) and (28), (dw); and (6¢);,
i =1,...,9, are random variables uniformly distributed within
[-0.01, +0.01] and [-0.1, 4+0.1], respectively. The new perturbed
system matrix is denoted by A;. If G(s) is given by Eq. (21), the
transfer matrix for the perturbed system is

Gi(s) = Cs(shs — As) 'B + D (29)
where
Cs =CA™'A; (30)
to reflect acceleration measurements.
With
G(s) = Wa ()G ()W i(s) (31
G, (s) = Wa()Gs (s) Wy (s) (32)

find normalized left-coprime factors such that

Gals) = (Ma)'Ny (33)
Gy (s) = (My,) ' N, G4

Define
AP = [AN,, —AM,] (35)

where
AM, = M;, — M, (36)
ANy = N;, — Ny 37

If jAP}c < €4, then the compensators, in addition to stabiliz-
ing G(s), also stabilize the perturbed system. No computations are
made to measure the effect of the parametric perturbations on the
unperturbed closed-loop damping ratios.

Compensator Design
Optimal Compensator

It was found'® that, since the optirtial compensator was not strictly
proper, i = 2 provided faster rcii-off and best allowed the satisfac-
tion of conditions (23) and {24). A representative optimal compen-
sator used (k, i, @) = (0.1, 2, 0.5). After scaling each channel of G
by 0.1/(s + 0.5)% , it was found that ¢, = 0.6749.

Over 2000 realizations of Eqs. (27) and (28) were computed for
the optimal compensator and the corresponding A P transfer matri-
ces [given by Ey. (35)] tested for satisfaction of AP, < EApa-
No violations were encountered. Values of | A P||,., ranged between
0.1728 and 0.5888 with a mean of 0.4627 and standard deviation of
0.0726. A frequency analysis of condition (23) indicates that mode
20 (the laser tower mode) at 41.9 rad/s (6.7 Hz) is the mode most
likely to expcrience destabilizing spillover. This property has also
been observed experimentally in previous studies.'? The analysis
also indicated an additive stability robustness margin of about 97%.
This ultraconservative margin for additive stability robustness was
forced by the desire to also have a compensator that guaranteed sta-
bility robustness to expected parametric uncertainties in frequencies
and damping ratios. For the same values of i and a, if k is increased
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Table 2 Eigenvalues of K4 (s) compensator
system matrix

Complex
Real (Re, £Im)

(—2.296, 4.230)

—0.1 (multiplicity 8)

—-0.1612 (—2.366 x 10!, 4.690)
—0.2945 (—1.859,5.232)
~0.4769 (—2.339, 8.859)
—1.8518 (—3.535,9.659)
—3.1977 (—1.408, 1.103 x 10)
-6.8123

Note: Reflects suboptimal studies; (k. i, a) = (0.5,1,0.1),
Eagax = 0.6670. £4 = 0.9c4p,, -

Singular Value Bounds

106 " aacaas A4 aaias —
10-1 100 10! 10 2

Frequency, rad/sec

Fig. 6 Suboptimal compensator K(s).

to 2.0, then a more reasonable margin of 43% is obtained. How-
ever, k = 2.0 produced e,,, = 0.4856, and this reduced value of
&4, leads to violations occurring greater than 40% of the time in
the random tests for |AP |l < €4, For fixed values of i and a,
decreasing k increases £,_,, and decreases ||AP| .. A value of k
allowing a sufficiently wide “gap” between the two quantities is re-
quired when specific ranges of parametric variations are considered.

The (0.1, 2, 0.5) compensator, when applied in the closed-loop
manner of Fig. 2 to the 50th-order system G,, leaves the open-
loop eigenvalues essentially unchanged except for modes 1-3.
Optimal compensators with better stability augmentation can be
obtained at the expense of violations in robust stability due to para-
metric variations in frequencies and damping ratios of the design
model.

Suboptimal Compensators

Central suboptimal compensators computed from strictly proper
systems G 4(s) are strictly proper, whereby lower order weighting
functions (than those used in the foregoing optimal compensator
studies) can be employed without difficulty in satisfying the addi-
tive robustness conditions. Suboptimal compensator studies'® were
performed using i = 1and ¢4 = 0.9¢,,,, from which a representa-
tive result had (k, i, a) = (0.5, 1, 0.1). After scaling each channel
of G by 0.5/(s +0.1), it was found that ¢, . = 0.667. Table 2 gives
the eigenvalues of the Hurwitz system matrix from a state-variable
realization of K 4(s). The order of the final compensator X is 34.
Figure 6 shows singular-value bounds for the compensator K (s).

Again, over 2000 realizations of Eqgs. (27) and (28) were com-
puted for the suboptimal compensator and the corresponding AP
transfer matrices tested for satisfaction of [ APl < £4,, Withno
violations encountered. Values of || A Pl ranged between 0.0561
and 0.5595 with a mean of 0.2798 and standard deviation of 0.0907.
The expected variations in frequency and damping ratio of 1 and
10%, respectively, are apparently close to the upper bounds for
robust stability for & = 0.5. Increasing the variations to 1.5% in
frequency and 15% in damping ratio causes violations about 6% of
the time.

Table 3 Closed-loop eigenvalues of design model controlled by

compensator K(s)
Open-loop Eigenvalues Damping ratio,
mode no. (Re, £Im) 4
la
23
3 (~2.610 x 10~!, 8.872 x 1071) 0.2822
4 (~5.216 x 107!, 4.620) 0.1122
5 (=1.767 x 107!, 4.671) 0.0378
or or
(—9.510 x 1072, 4.653) 0.0204
6 (—4.760 x 1071, 5.480) 0.0865
7 (—6.248 x 10~1,9.237) 0.0675
8 (—9.416 x 1071, 1.086 x 10) 0.0838
9 (—4.921 x 107}, 1.178 x 10) 0.0417
10 (—8.062 x 1072, 1.447 x 10) 0.0056
11 (—1.056 x 10~1, 1.785 x 10) 0.0059
12 (—1.266 x 1071, 2.522 x 10) 0.0050
13 (—~1.391 x 1071, 2.538 x 10) 0.0055
14 (—1.336 x 1071, 2.643 x 10) 0.0051
15 (~1.606 x 1071, 2.766 x 10) 0.0058
16 (~1.747 x 1071, 3.458 x 10) 0.0050
17 (~1.953 x 1071, 3.884 x 10) 0.0050
18 (~2.038 x 1071, 3.919 x 10) 0.0052
19 (—2.133 x 107!, 4.071 x 10) 0.0052
20 (=2.122 x 1071, 4.194 x 10) 0.0051
21 (—2.334 x 1071, 4.634 x 10) 0.0050
2 (2623 x 1071, 5.212 x 10) 0.0050
23 (—2.895 x 1071, 5.639 x 10) 0.0051
24 (—3.924 x 107!, 7.845 x 10) 0.0050
25 (—5.295 x 1071, 1.059 x 10%) 0.0050
Note: Reflects suboptimal studies; (k,i,a) = (0.5, 1,0.1), eapy, = 0.6670,
€4 =0.9c 4, -
3Not discernible from data.
100 e
5(aG K(1 - GKY'! o)) N\
101
_g 4
10-2 4 E
" b
1035 * 2
Frequency, rad/sec

Fig. 7 Robustness condition (23) for suboptimal compensator K(s).

Satisfaction of condition (23) is shown in Fig. 7. The peak value
of the singular-value curve Fig. 7 is 0.562, indicating an additive sta-
bility robustness margin of about 44%.

The suboptimal compensator was also applied to the control of
the SOth-order system G, and an eigenvalue analysis performed.
Results are given in Table 3. The real parts of the eigenvalues for
modes 10-25 are not significantly changed from the corresponding
values of Table 1, indicating that the additive robustness condi-
tions are satisfied. The eigenvalue data gave two eigenvalues with
imaginary parts close to the imaginary part of open-loop mode 5.
Both are shown in Table 3. It is possible that the entry with the
largest real part is the closed-loop eigenvalue of mode 5 since this
mode is the least controllable and observable of the first nine modes.
No correlation could be made for modes 1 and 2.

Evaluation Model Simulations
The suboptimal compensator was applied to the control of the
full 86-mode evaluation phase 0 model subjected to a transient
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Fig. 8 Accelerometer 7 output time history for suboptimal compen-
sator K(s).
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Fig. 9 Accelerometer 8 output time history for suboptimal compen-
sator K(s).

input disturbance. The simulation consisted of applying an exci-
tation input sequence for the first 9 s, allowing 1 s of free decay
and then applying a controller at the 10-s mark for a total dura-
tion of 30 s. The input sequence consisted of harmonic forces de-
signed to excite two pendulum modes (modes 1 and 3) and the
first two bending modes (modes 7 and 8) using a single actua-
tor for each mode. Specifically, actuators 1 (mode 7), 2 (mode 8),
6 (mode 3), and 7 (mode 1) were excited with signals of 1.474,
1.738, 0.155, and 0.147 Hz, respectively. No actuator dynamics
were considered.

The compensators were discretized at a sampling rate of 133 Hz.
This is the same input sequence and sampling rate employed in ex-
perimental investigations'? using the actual phase 0 structure. Fig-
ures 8 and 9 show output time histories for accelerometers 7 and
8 at the laser tower location. The suboptimal responses compare
favorably with other compensators'?!¢ designed with performance
issues in mind.

Concluding Remarks

A robust stabilization approach based on the use of normal-
ized coprime factor plant descriptions has been applied to produce
vibration-suppression controllers for a simulated model of the CSI
phase 0 evolutionary model. The study indicates that, when requir-
ing the compensators to satisfy the design objectives of stability
augmentation, robust stability to unmodeled dynamics appearing
as additive perturbations, and robustness to structured parametric
variations, the optimal robust compensators can be overly conserva-
tive with marginal stability augmentation, whereas the suboptimal
compensators are not. For the class of flexible-structure applica-
tions considered, the suboptimal version of the McFarlane-Glover
theory provides a viable approach for the computation of low au-
thority controllers providing robust stability augmentation. These
controllers may need to be supplemented with high authority loops
to meet additional performance objectives.
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